Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
J Nanobiotechnology ; 20(1): 538, 2022 Dec 22.
Artigo em Inglês | MEDLINE | ID: covidwho-2282177

RESUMO

Nanoparticles have now long demonstrated capabilities that make them attractive to use in biology and medicine. Some of them, such as lipid nanoparticles (SARS-CoV-2 vaccines) or metallic nanoparticles (contrast agents) are already approved for their use in the clinic. However, considering the constantly growing body of different formulations and the huge research around nanomaterials the number of candidates reaching clinical trials or being commercialized is minimal. The reasons behind being related to the "synthetic" and "foreign" character of their surface. Typically, nanomaterials aiming to develop a function or deliver a cargo locally, fail by showing strong off-target accumulation and generation of adverse responses, which is connected to their strong recognition by immune phagocytes primarily. Therefore, rendering in negligible numbers of nanoparticles developing their intended function. While a wide range of coatings has been applied to avoid certain interactions with the surrounding milieu, the issues remained. Taking advantage of the natural cell membranes, in an approach that resembles a cell transfer, the use of cell-derived surfaces has risen as an alternative to artificial coatings or encapsulation methods. Biomimetic technologies are based on the use of isolated natural components to provide autologous properties to the nanoparticle or cargo being encapsulated, thus, improving their therapeutic behavior. The main goal is to replicate the (bio)-physical properties and functionalities of the source cell and tissue, not only providing a stealthy character to the core but also taking advantage of homotypic properties, that could prove relevant for targeted strategies. Such biomimetic formulations have the potential to overcome the main issues of approaches to provide specific features and identities synthetically. In this review, we provide insight into the challenges of nano-biointerfaces for drug delivery; and the main applications of biomimetic materials derived from specific cell types, focusing on the unique strengths of the fabrication of novel nanotherapeutics in cancer therapy.


Assuntos
Materiais Biomiméticos , COVID-19 , Nanopartículas , Neoplasias , Humanos , Biomimética , Vacinas contra COVID-19 , COVID-19/metabolismo , SARS-CoV-2 , Sistemas de Liberação de Medicamentos , Nanopartículas/uso terapêutico , Membrana Celular/metabolismo , Neoplasias/terapia , Neoplasias/metabolismo
3.
J Phys Chem Lett ; 13(32): 7420-7428, 2022 Aug 18.
Artigo em Inglês | MEDLINE | ID: covidwho-1984350

RESUMO

The COVID-19 pandemic has become a global health challenge because of the emergence of distinct variants. Omicron, a new variant, is recognized as a variant of concern (VOC) by the World Health Organization (WHO) because of its higher mutations and accelerated human infection. The infection rate is strongly dependent on the binding rate of the receptor binding domain (RBD) against human angiotensin converting enzyme-2 (ACE2human) receptor. Inhibition of protein-protein (RBDs(SARS-CoV-2/omicron)-ACE2human) interaction has been already proven to inhibit viral infection. We have systematically designed ACE2human-derived peptides and peptide mimetics that have high binding affinity toward RBDomicron. Our peptide mutational analysis indicated the influence of canonical amino acids on the peptide binding process. Herein, efforts have been made to explore the atomistic details and events of RBDs(SARS-CoV-2/omicron)-ACE2human interactions by using molecular dynamics simulation. Our studies pave a path for developing therapeutic peptidomimetics against omicron.


Assuntos
Enzima de Conversão de Angiotensina 2 , Tratamento Farmacológico da COVID-19 , Materiais Biomiméticos/uso terapêutico , Humanos , Mutação , Pandemias , Peptídeos/metabolismo , Peptidil Dipeptidase A/química , Ligação Proteica , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus/química
4.
Int J Pharm ; 620: 121757, 2022 May 25.
Artigo em Inglês | MEDLINE | ID: covidwho-1796680

RESUMO

Pulmonary diseases are currently one of the major threats of human health, especially considering the recent COVID-19 pandemic. However, the current treatments are facing the challenges like insufficient local drug concentrations, the fast lung clearance and risks to induce unexpected inflammation. Cell-derived membrane biomimetic nanocarriers are recently emerged delivery strategy, showing advantages of long circulation time, excellent biocompatibility and immune escape ability. In this review, applications of using cell-derived membrane biomimetic nanocarriers from diverse cell sources for the targeted therapy of pulmonary disease were summarized. In addition, improvements of the cell-derived membrane biomimetic nanocarriers for augmented therapeutic ability against different kinds of pulmonary diseases were introduced. This review is expected to provide a general guideline for the potential applications of cell-derived membrane biomimetic nanocarriers to treat pulmonary diseases.


Assuntos
Materiais Biomiméticos , Tratamento Farmacológico da COVID-19 , Nanopartículas , Biomimética , Membrana Celular/metabolismo , Portadores de Fármacos/metabolismo , Sistemas de Liberação de Medicamentos , Humanos , Pandemias
5.
Acc Chem Res ; 54(23): 4283-4293, 2021 12 07.
Artigo em Inglês | MEDLINE | ID: covidwho-1521679

RESUMO

After decades of extensive fundamental studies and clinical trials, lipid nanoparticles (LNPs) have demonstrated effective mRNA delivery such as the Moderna and Pfizer-BioNTech vaccines fighting against COVID-19. Moreover, researchers and clinicians have been investigating mRNA therapeutics for a variety of therapeutic indications including protein replacement therapy, genome editing, and cancer immunotherapy. To realize these therapeutics in the clinic, there are many formidable challenges. First, novel delivery systems such as LNPs with high delivery efficiency and low toxicity need to be developed for different cell types. Second, mRNA molecules need to be engineered for improved pharmaceutical properties. Lastly, the LNP-mRNA nanoparticle formulations need to match their therapeutic applications.In this Account, we summarize our recent advances in the design and development of various classes of lipids and lipid derivatives, which can be formulated with multiple types of mRNA molecules to treat diverse diseases. For example, we conceived a series of ionizable lipid-like molecules based on the structures of a benzene core, an amide linker, and hydrophobic tails. We identified N1,N3,N5-tris(3-(didodecylamino)propyl)benzene-1,3,5-tricarboxamide (TT3) as a lead compound for mRNA delivery both in vitro and in vivo. Moreover, we tuned the biodegradability of these lipid-like molecules by introducing branched ester or linear ester chains. Meanwhile, inspired by biomimetic compounds, we synthesized vitamin-derived lipids, chemotherapeutic conjugated lipids, phospholipids, and glycolipids. These scaffolds greatly broaden the chemical space of ionizable lipids for mRNA delivery. In another section, we highlight our efforts on the research direction of mRNA engineering. We previously optimized mRNA chemistry using chemically-modified nucleotides to increase the protein expression, such as pseudouridine (ψ), 5-methoxyuridine (5moU), and N1-methylpseudouridine (me1ψ). Also, we engineered the sequences of mRNA 5' untranslated regions (5'-UTRs) and 3' untranslated regions (3'-UTRs), which dramatically enhanced protein expression. With the progress of LNP development and mRNA engineering, we consolidate these technologies and apply them to treat diseases such as genetic disorders, infectious diseases, and cancers. For instance, TT3 and its analog-derived lipid-like nanoparticles can effectively deliver factor IX or VIII mRNA and recover the clotting activity in hemophilia mouse models. Engineered mRNAs encoding SARS-CoV-2 antigens serve well as vaccine candidates against COVID-19. Vitamin-derived lipid nanoparticles loaded with antimicrobial peptide-cathepsin B mRNA enable adoptive macrophage transfer to treat multidrug resistant bacterial sepsis. Biomimetic lipids such as phospholipids formulated with mRNAs encoding costimulatory receptors lead to enhanced cancer immunotherapy.Overall, lipid-mRNA nanoparticle formulations have considerably benefited public health in the COVID-19 pandemic. To expand their applications in clinical use, research work from many disciplines such as chemistry, engineering, materials, pharmaceutical sciences, and medicine need to be integrated. With these collaborative efforts, we believe that more and more lipid-mRNA nanoparticle formulations will enter the clinic in the near future and benefit human health.


Assuntos
Portadores de Fármacos/química , Lipossomos/química , Nanopartículas/química , RNA Mensageiro/química , Animais , Benzamidas/química , Materiais Biomiméticos/química , Doenças Transmissíveis/imunologia , Doenças Transmissíveis/terapia , Modelos Animais de Doenças , Doenças Genéticas Inatas/imunologia , Doenças Genéticas Inatas/terapia , Humanos , Camundongos , Neoplasias/imunologia , Neoplasias/terapia , Fosfolipídeos/química , RNA Mensageiro/metabolismo , RNA Mensageiro/uso terapêutico , Regiões não Traduzidas , Vitaminas/química
6.
Carbohydr Polym ; 273: 118605, 2021 Dec 01.
Artigo em Inglês | MEDLINE | ID: covidwho-1370153

RESUMO

Advanced biomaterials provide an interesting and versatile platform to implement new and more effective strategies to fight bacterial infections. Chitosan is one of these biopolymers and possesses relevant features for biomedical applications. Here we synthesized nanoparticles of chitosan derivatized with diethylaminoethyl groups (ChiDENPs) to emulate the choline residues in the pneumococcal cell wall and act as ligands for choline-binding proteins (CBPs). Firstly, we assessed the ability of diethylaminoethyl (DEAE) to sequester the CBPs present in the bacterial surface, thus promoting chain formation. Secondly, the CBP-binding ability of ChiDENPs was purposed to encapsulate a bio-active molecule, the antimicrobial enzyme Cpl-711 (ChiDENPs-711), with improved stability over non-derivatized chitosan. The enzyme-loaded system released more than 90% of the active enzybiotic in ≈ 2 h, above the usual in vivo half-life of this kind of enzymes. Therefore, ChiDENPs provide a promising platform for the controlled release of CBP-enzybiotics in biological contexts.


Assuntos
Antibacterianos/farmacologia , Materiais Biomiméticos/química , Quitosana/análogos & derivados , Portadores de Fármacos/química , Endopeptidases/farmacologia , Nanopartículas/química , Células A549 , Antibacterianos/química , Proteínas de Bactérias/metabolismo , Materiais Biomiméticos/metabolismo , Quitosana/química , Quitosana/metabolismo , Portadores de Fármacos/metabolismo , Liberação Controlada de Fármacos , Endopeptidases/química , Humanos , Nanopartículas/metabolismo , Streptococcus pneumoniae/efeitos dos fármacos
7.
Acta Pharmacol Sin ; 42(11): 1913-1920, 2021 11.
Artigo em Inglês | MEDLINE | ID: covidwho-1437673

RESUMO

Sepsis is a dysregulated immune response to infection and potentially leads to life-threatening organ dysfunction, which is often seen in serious Covid-19 patients. Disulfiram (DSF), an old drug that has been used to treat alcohol addiction for decades, has recently been identified as a potent inhibitor of the gasdermin D (GSDMD)-induced pore formation that causes pyroptosis and inflammatory cytokine release. Therefore, DSF represents a promising therapeutic for the treatment of inflammatory disorders. Lactoferrin (LF) is a multifunctional glycoprotein with potent antibacterial and anti-inflammatory activities that acts by neutralizing circulating endotoxins and activating cellular responses. In addition, LF has been well exploited as a drug nanocarrier and targeting ligands. In this study, we developed a DSF-LF nanoparticulate system (DSF-LF NP) for combining the immunosuppressive activities of both DSF and LF. DSF-LF NPs could effectively block pyroptosis and inflammatory cytokine release from macrophages. Treatment with DSF-LF NPs showed remarkable therapeutic effects on lipopolysaccharide (LPS)-induced sepsis. In addition, this therapeutic strategy was also applied to treat ulcerative colitis (UC), and substantial treatment efficacy was achieved in a murine colitis model. The underlying mode of action of these DSF-LF-NPs may contribute to efficiently suppressing macrophage-mediated inflammatory responses and ameliorating the complications caused by sepsis and UC. As macrophage pyroptosis plays a pivotal role in inflammation, this safe and effective biomimetic nanomedicine may offer a versatile therapeutic strategy for treating various inflammatory diseases by repurposing DSF.


Assuntos
Tratamento Farmacológico da COVID-19 , COVID-19 , Colite Ulcerativa , Dissulfiram/farmacocinética , Lactoferrina , Síndrome de Resposta Inflamatória Sistêmica , Inibidores de Acetaldeído Desidrogenases/farmacologia , Animais , Anti-Inflamatórios/farmacologia , Materiais Biomiméticos/farmacologia , COVID-19/imunologia , Colite Ulcerativa/tratamento farmacológico , Colite Ulcerativa/imunologia , Modelos Animais de Doenças , Dissulfiram/farmacologia , Portadores de Fármacos/farmacologia , Humanos , Imunossupressores/farmacologia , Lactoferrina/metabolismo , Lactoferrina/farmacologia , Lipopolissacarídeos/imunologia , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Nanopartículas/uso terapêutico , Piroptose/efeitos dos fármacos , SARS-CoV-2 , Síndrome de Resposta Inflamatória Sistêmica/tratamento farmacológico , Síndrome de Resposta Inflamatória Sistêmica/imunologia , Síndrome de Resposta Inflamatória Sistêmica/metabolismo , Resultado do Tratamento
8.
Trends Pharmacol Sci ; 42(10): 813-828, 2021 10.
Artigo em Inglês | MEDLINE | ID: covidwho-1370313

RESUMO

Vaccines have been used to train the immune system to recognize pathogens, and prevent and treat diseases, such as cancer, for decades. However, there are continuing challenges in their manufacturing, large-scale production, and storage. Some of them also show suboptimal immunogenicity, requiring additional adjuvants and booster doses. As an alternate vaccination strategy, a new class of biomimetic materials with unique functionalities has emerged in recent years. Here, we explore the current bioengineering techniques that make use of hydrogels, modified polymers, cell membranes, self-assembled proteins, virus-like particles (VLPs), and nucleic acids to deliver and develop biomaterial-based vaccines. We also review design principles and key regulatory issues associated with their development. Finally, we critically assess their limitations, explore approaches to overcome these limitations, and discuss potential future applications for clinical translation.


Assuntos
Materiais Biomiméticos , Vacinas , Materiais Biocompatíveis , Hidrogéis , Polímeros
9.
ACS Appl Bio Mater ; 4(7): 5485-5493, 2021 07 19.
Artigo em Inglês | MEDLINE | ID: covidwho-1327183

RESUMO

Attachment of microbial bodies including the corona virus on the surface of personal protective equipment (PPE) is found to be potential threat of spreading infection. Here, we report the development of a triboelectroceutical fabric (TECF) consisting of commonly available materials, namely, nylon and silicone rubber (SR), for the fabrication of protective gloves on the nitrile platform as model wearable PPE. A small triboelectric device (2 cm × 2 cm) consisting of SR and nylon on nitrile can generate more than 20 V transient or 41 µW output power, which is capable of charging a capacitor up to 65 V in only ∼50 s. The importance of the present work relies on the TECF-led antimicrobial activity through the generation of an electric current in saline water. The fabrication of TECF-based functional prototype gloves can generate hypochlorite ions through the formation of electrolyzed water upon rubbing them with saline water. Further, computational modelling has been employed to reveal the optimum structure and mechanistic pathway of antimicrobial hypochlorite generation. Detailed antimicrobial assays have been performed to establish effectiveness of such TECF-based gloves to reduce the risk from life-threatening pathogen spreading. The present work provides the rationale to consider the studied TECF, or other materials with comparable properties, as a material of choice for the development of self-sanitizing PPE in the fight against microbial infections including COVID-19.


Assuntos
Anti-Infecciosos/química , Eletricidade , Equipamento de Proteção Individual , Anti-Infecciosos/metabolismo , Anti-Infecciosos/farmacologia , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Materiais Biomiméticos/química , Materiais Biomiméticos/farmacologia , COVID-19/patologia , COVID-19/prevenção & controle , COVID-19/virologia , Humanos , Nylons/química , Equipamento de Proteção Individual/microbiologia , Equipamento de Proteção Individual/virologia , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/metabolismo , Reciclagem , SARS-CoV-2/efeitos dos fármacos , SARS-CoV-2/isolamento & purificação , SARS-CoV-2/metabolismo , Elastômeros de Silicone/química , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/metabolismo
10.
Anal Chem ; 93(30): 10444-10452, 2021 08 03.
Artigo em Inglês | MEDLINE | ID: covidwho-1319008

RESUMO

The COVID-19 pandemic caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) is a serious public health threat. Most vaccines against SARS-CoV-2 target the highly glycosylated spike protein (S). A good knowledge of the glycosylation profile of this protein is key to successful vaccine development. Unlike the 22 confirmed N-glycosylation sites on SARS-CoV-2 S, only a few O-glycosylation sites on this protein have been reported. This difference is mainly ascribed to the extremely low stoichiometry of O-glycosylation. Herein, we designed the biomimetic materials, Trp-Arg (WR) monomer-grafted silica microspheres (designated as WR-SiO2), and these biomimetic materials can enrich N- and O-linked glycopeptides with high selectivity. And WR-SiO2 can resist the nonglycopeptides' interference with the 100 molar fold of BSA during O-linked glycopeptide enrichment. We utilized WR-SiO2 to comprehensively analyze the O-glycosylation profile of recombinant SARS-CoV-2 S. Twenty-seven O-glycosylation sites including 18 unambiguous sites are identified on SARS-CoV-2 S. Our study demonstrates that the biomimetic polymer can offer specific selectivity for O-linked glycopeptides and pave the way for O-glycosylation research in biological fields. The O-glycosylation profile of SARS-CoV-2 S might supplement the comprehensive glycosylation in addition to N-glycosylation of SARS-CoV-2 S.


Assuntos
Materiais Biomiméticos , COVID-19 , Biomimética , Vacinas contra COVID-19 , Glicosilação , Humanos , Pandemias , SARS-CoV-2 , Dióxido de Silício , Glicoproteína da Espícula de Coronavírus/metabolismo
11.
Int J Biol Macromol ; 182: 648-658, 2021 Jul 01.
Artigo em Inglês | MEDLINE | ID: covidwho-1184990

RESUMO

Vaccination is the most effective means of controlling infectious disease-related morbidity and mortality. However, due to low immunogenicity of viral antigens, nanomedicine as a new opportunity in new generation of vaccine advancement attracted researcher encouragement. Virosome is a lipidic nanomaterial emerging as FDA approved nanocarriers with promising bioinspiration and biomimetic potency against viral infections. Virosome surface modification with critical viral fusion proteins is the cornerstone of vaccine development. Surface antigens at virosomes innovatively interact with targeted receptors on host cells that evoke humoral or cellular immune responses through antibody-producing B cell and internalization by endocytosis-mediated pathways. To date, several nanovaccine based on virosome formulations have been commercialized against widespread and life-threatening infections. Recently, Great efforts were made to fabricate a virosome-based vaccine platform against a new severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus. Thus, this review provides a novel overview of the virosome based nanovaccine production, properties, and application on the viral disease, especially its importance in SARS-CoV-2 vaccine discovery.


Assuntos
Materiais Biomiméticos/uso terapêutico , Vacinas contra COVID-19/uso terapêutico , COVID-19/prevenção & controle , SARS-CoV-2/imunologia , Virossomos/uso terapêutico , Animais , COVID-19/imunologia , Vacinas contra COVID-19/imunologia , Humanos , Virossomos/imunologia
12.
Glycobiology ; 31(8): 975-987, 2021 09 09.
Artigo em Inglês | MEDLINE | ID: covidwho-1169667

RESUMO

Coronavirus disease 2019 (COVID-19) has spread rapidly throughout the globe. The spectrum of disease is broad but among hospitalized patients with COVID-19, respiratory failure from acute respiratory distress syndrome is the leading cause of mortality. There is an urgent need for an effective treatment. The current focus has been developing novel therapeutics, including antivirals, protease inhibitors, vaccines and targeting the overactive cytokine response with anti-cytokine therapy. The overproduction of early response proinflammatory cytokines results in what has been described as a "cytokine storm" is leading eventually to death when the cells fail to terminate the inflammatory response. Accumulating evidence shows that inflammatory cytokines induce selectin ligands that play a crucial role in the pathogenesis of inflammatory diseases by mediating leukocyte migration from the blood into the tissue. Thus, the selectins and selectin ligands represent a promising therapeutic target for the treatment of COVID-19. In this paper, potential pan-selectin inhibitors were identified employing a virtual screening using a docking procedure. For this purpose, the Asinex and ZINC databases of ligands, including approved drugs, biogenic compounds and glycomimetics, altogether 923,602 compounds, were screened against the P-, L- and E-selectin. At first, the experimentally confirmed inhibitors were docked into all three selectins' carbohydrate recognition domains to assess the suitability of the screening procedure. Finally, based on the evaluation of ligands binding, we propose 10 purchasable pan-selectin inhibitors to develop COVID-19 therapeutics.


Assuntos
Antivirais/química , Materiais Biomiméticos/química , Tratamento Farmacológico da COVID-19 , Simulação por Computador , Bases de Dados de Compostos Químicos , SARS-CoV-2/química , Selectinas/química , Avaliação Pré-Clínica de Medicamentos , Humanos , SARS-CoV-2/metabolismo
13.
J Nanobiotechnology ; 19(1): 26, 2021 Jan 19.
Artigo em Inglês | MEDLINE | ID: covidwho-1067241

RESUMO

With the rapid advancement and progress of nanotechnology, nanomaterials with enzyme-like catalytic activity have fascinated the remarkable attention of researchers, due to their low cost, high operational stability, adjustable catalytic activity, and ease of recycling and reuse. Nanozymes can catalyze the same reactions as performed by enzymes in nature. In contrast the intrinsic shortcomings of natural enzymes such as high manufacturing cost, low operational stability, production complexity, harsh catalytic conditions and difficulties of recycling, did not limit their wide applications. The broad interest in enzymatic nanomaterial relies on their outstanding properties such as stability, high activity, and rigidity to harsh environments, long-term storage and easy preparation, which make them a convenient substitute instead of the native enzyme. These abilities make the nanozymes suitable for multiple applications in sensing and imaging, tissue engineering, environmental protection, satisfactory tumor diagnostic and therapeutic, because of distinguished properties compared with other artificial enzymes such as high biocompatibility, low toxicity, size dependent catalytic activities, large surface area for further bioconjugation or modification and also smart response to external stimuli. This review summarizes and highlights latest progress in applications of metal and metal oxide nanomaterials with enzyme/multienzyme mimicking activities. We cover the applications of sensing, cancer therapy, water treatment and anti-bacterial efficacy. We also put forward the current challenges and prospects in this research area, hoping to extension of this emerging field. In addition to therapeutic potential of nanozymes for disease prevention, their practical effects in diagnostics, to monitor the presence of SARS-CoV-2 and related biomarkers for future pandemics will be predicted.


Assuntos
Materiais Biomiméticos/química , Metais/química , Nanomedicina/métodos , Nanoestruturas/química , Óxidos/química , Animais , Antibacterianos/química , Antibacterianos/uso terapêutico , Biocatálise , Materiais Biomiméticos/uso terapêutico , Técnicas Biossensoriais/métodos , Biotecnologia/métodos , Teste para COVID-19/métodos , Monitoramento Ambiental/métodos , Humanos , Metais/uso terapêutico , Nanotecnologia/métodos , Neoplasias/diagnóstico , Neoplasias/terapia , Óxidos/uso terapêutico
14.
J Biol Chem ; 296: 100111, 2021.
Artigo em Inglês | MEDLINE | ID: covidwho-1066049

RESUMO

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), a ß-coronavirus, is the causative agent of the COVID-19 pandemic. Like for other coronaviruses, its particles are composed of four structural proteins: spike (S), envelope (E), membrane (M), and nucleoprotein (N) proteins. The involvement of each of these proteins and their interactions are critical for assembly and production of ß-coronavirus particles. Here, we sought to characterize the interplay of SARS-CoV-2 structural proteins during the viral assembly process. By combining biochemical and imaging assays in infected versus transfected cells, we show that E and M regulate intracellular trafficking of S as well as its intracellular processing. Indeed, the imaging data reveal that S is relocalized at endoplasmic reticulum (ER)-Golgi intermediate compartment (ERGIC) or Golgi compartments upon coexpression of E or M, as observed in SARS-CoV-2-infected cells, which prevents syncytia formation. We show that a C-terminal retrieval motif in the cytoplasmic tail of S is required for its M-mediated retention in the ERGIC, whereas E induces S retention by modulating the cell secretory pathway. We also highlight that E and M induce a specific maturation of N-glycosylation of S, independently of the regulation of its localization, with a profile that is observed both in infected cells and in purified viral particles. Finally, we show that E, M, and N are required for optimal production of virus-like-particles. Altogether, these results highlight how E and M proteins may influence the properties of S proteins and promote the assembly of SARS-CoV-2 viral particles.


Assuntos
Proteínas do Envelope de Coronavírus/genética , Proteínas do Nucleocapsídeo/genética , SARS-CoV-2/crescimento & desenvolvimento , Glicoproteína da Espícula de Coronavírus/genética , Proteínas da Matriz Viral/genética , Vírion/crescimento & desenvolvimento , Montagem de Vírus/fisiologia , Animais , Materiais Biomiméticos/química , Materiais Biomiméticos/metabolismo , Linhagem Celular Tumoral , Chlorocebus aethiops , Proteínas do Envelope de Coronavírus/metabolismo , Retículo Endoplasmático/metabolismo , Retículo Endoplasmático/ultraestrutura , Retículo Endoplasmático/virologia , Expressão Gênica , Complexo de Golgi/metabolismo , Complexo de Golgi/ultraestrutura , Complexo de Golgi/virologia , Células HEK293 , Hepatócitos/metabolismo , Hepatócitos/ultraestrutura , Hepatócitos/virologia , Interações Hospedeiro-Patógeno/genética , Humanos , Proteínas do Nucleocapsídeo/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , SARS-CoV-2/genética , SARS-CoV-2/metabolismo , Glicoproteína da Espícula de Coronavírus/metabolismo , Células Vero , Proteínas da Matriz Viral/metabolismo , Vírion/genética , Vírion/metabolismo , Internalização do Vírus , Liberação de Vírus/fisiologia
15.
J Proteome Res ; 20(2): 1296-1303, 2021 02 05.
Artigo em Inglês | MEDLINE | ID: covidwho-1065787

RESUMO

SARS-CoV-2, a novel coronavirus causing overwhelming death and infection worldwide, has emerged as a pandemic. Compared to its predecessor SARS-CoV, SARS-CoV-2 is more infective for being highly contagious and exhibiting tighter binding with host angiotensin-converting enzyme 2 (hACE-2). The entry of the virus into host cells is mediated by the interaction of its spike protein with hACE-2. Thus, a peptide that has a resemblance to hACE-2 but can overpower the spike protein-hACE-2 interaction will be a potential therapeutic to contain this virus. The non-interacting residues in the receptor-binding domain of hACE-2 have been mutated to generate a library of 136 new peptides. Out of this library, docking and virtual screening discover seven peptides that can exert a stronger interaction with the spike protein than hACE-2. A peptide derived from simultaneous mutation of all the non-interacting residues of hACE-2 yields almost three-fold stronger interaction than hACE-2 and thus turns out here to be the best peptide inhibitor of the novel coronavirus. The binding of the best peptide inhibitor with the spike protein is explored further by molecular dynamics, free energy, and principal component analysis, which demonstrate its efficacy compared to hACE-2. The delivery of the screened inhibitors with nanocarriers like metal-organic frameworks will be worthy of further consideration to boost their efficacy.


Assuntos
Enzima de Conversão de Angiotensina 2/metabolismo , Antivirais/farmacologia , Materiais Biomiméticos/farmacologia , Peptídeos/farmacologia , Glicoproteína da Espícula de Coronavírus/antagonistas & inibidores , Enzima de Conversão de Angiotensina 2/química , Antivirais/química , Materiais Biomiméticos/química , COVID-19/epidemiologia , COVID-19/prevenção & controle , COVID-19/virologia , Humanos , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Pandemias , Peptídeos/química , Ligação Proteica/efeitos dos fármacos , SARS-CoV-2/efeitos dos fármacos , SARS-CoV-2/metabolismo , SARS-CoV-2/fisiologia , Glicoproteína da Espícula de Coronavírus/metabolismo
16.
Adv Mater ; 33(8): e2005477, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: covidwho-1039151

RESUMO

Besides the pandemic caused by the coronavirus outbreak, many other pathogenic microbes also pose a devastating threat to human health, for instance, pathogenic bacteria. Due to the lack of broad-spectrum antibiotics, it is urgent to develop nonantibiotic strategies to fight bacteria. Herein, inspired by the localized "capture and killing" action of bacteriophages, a virus-like peroxidase-mimic (V-POD-M) is synthesized for efficient bacterial capture (mesoporous spiky structures) and synergistic catalytic sterilization (metal-organic-framework-derived catalytic core). Experimental and theoretical calculations show that the active compound, MoO3 , can serve as a peroxo-complex-intermediate to reduce the free energy for catalyzing H2 O2 , which mainly benefits the generation of •OH radicals. The unique virus-like spikes endow the V-POD-M with fast bacterial capture and killing abilities (nearly 100% at 16 µg mL-1 ). Furthermore, the in vivo experiments show that V-POD-M possesses similar disinfection treatment and wound skin recovery efficiencies to vancomycin. It is suggested that this inexpensive, durable, and highly reactive oxygen species (ROS) catalytic active V-POD-M provides a promising broad-spectrum therapy for nonantibiotic disinfection.


Assuntos
Antibacterianos/síntese química , Materiais Biomiméticos/síntese química , Óxidos/síntese química , Peroxidase/química , Antibacterianos/farmacologia , Materiais Biocompatíveis/química , Materiais Biomiméticos/farmacologia , Catálise , Humanos , Peróxido de Hidrogênio/metabolismo , Estruturas Metalorgânicas/química , Estruturas Metalorgânicas/farmacologia , Simulação de Dinâmica Molecular , Molibdênio/farmacologia , Óxidos/farmacologia , Peroxidase/metabolismo , Esterilização , Vancomicina/farmacologia
17.
J Biol Chem ; 296: 100103, 2021.
Artigo em Inglês | MEDLINE | ID: covidwho-936211

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was first discovered in December 2019 in Wuhan, China, and expeditiously spread across the globe causing a global pandemic. Research on SARS-CoV-2, as well as the closely related SARS-CoV-1 and MERS coronaviruses, is restricted to BSL-3 facilities. Such BSL-3 classification makes SARS-CoV-2 research inaccessible to the majority of functioning research laboratories in the United States; this becomes problematic when the collective scientific effort needs to be focused on such in the face of a pandemic. However, a minimal system capable of recapitulating different steps of the viral life cycle without using the virus' genetic material could increase accessibility. In this work, we assessed the four structural proteins from SARS-CoV-2 for their ability to form virus-like particles (VLPs) from human cells to form a competent system for BSL-2 studies of SARS-CoV-2. Herein, we provide methods and resources of producing, purifying, fluorescently and APEX2-labeling of SARS-CoV-2 VLPs for the evaluation of mechanisms of viral budding and entry as well as assessment of drug inhibitors under BSL-2 conditions. These systems should be useful to those looking to circumvent BSL-3 work with SARS-CoV-2 yet study the mechanisms by which SARS-CoV-2 enters and exits human cells.


Assuntos
Proteínas do Envelope de Coronavírus/genética , Proteínas do Nucleocapsídeo/genética , SARS-CoV-2/crescimento & desenvolvimento , Glicoproteína da Espícula de Coronavírus/genética , Proteínas da Matriz Viral/genética , Vírion/crescimento & desenvolvimento , Materiais Biomiméticos/química , Materiais Biomiméticos/metabolismo , Contenção de Riscos Biológicos/classificação , Proteínas do Envelope de Coronavírus/metabolismo , Expressão Gênica , Genes Reporter , Regulamentação Governamental , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Células HEK293 , Humanos , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Microscopia Eletrônica , Proteínas do Nucleocapsídeo/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , SARS-CoV-2/genética , SARS-CoV-2/metabolismo , SARS-CoV-2/ultraestrutura , Glicoproteína da Espícula de Coronavírus/metabolismo , Proteínas da Matriz Viral/metabolismo , Vírion/genética , Vírion/metabolismo , Vírion/ultraestrutura , Montagem de Vírus/fisiologia , Internalização do Vírus , Liberação de Vírus/fisiologia
18.
Pharm Res ; 37(11): 212, 2020 Oct 06.
Artigo em Inglês | MEDLINE | ID: covidwho-834023

RESUMO

PURPOSE: Coronavirus disease 2019 (COVID-19) is expected to continue to cause worldwide fatalities until the World population develops 'herd immunity', or until a vaccine is developed and used as a prevention. Meanwhile, there is an urgent need to identify alternative means of antiviral defense. Bacillus Calmette-Guérin (BCG) vaccine that has been recognized for its off-target beneficial effects on the immune system can be exploited to boast immunity and protect from emerging novel viruses. METHODS: We developed and employed a systems biology workflow capable of identifying small-molecule antiviral drugs and vaccines that can boast immunity and affect a wide variety of viral disease pathways to protect from the fatal consequences of emerging viruses. RESULTS: Our analysis demonstrates that BCG vaccine affects the production and maturation of naïve T cells resulting in enhanced, long-lasting trained innate immune responses that can provide protection against novel viruses. We have identified small-molecule BCG mimics, including antiviral drugs such as raltegravir and lopinavir as high confidence hits. Strikingly, our top hits emetine and lopinavir were independently validated by recent experimental findings that these compounds inhibit the growth of SARS-CoV-2 in vitro. CONCLUSIONS: Our results provide systems biology support for using BCG and small-molecule BCG mimics as putative vaccine and drug candidates against emergent viruses including SARS-CoV-2.


Assuntos
Vacina BCG/administração & dosagem , Materiais Biomiméticos/administração & dosagem , Infecções por Coronavirus/tratamento farmacológico , Infecções por Coronavirus/prevenção & controle , Reposicionamento de Medicamentos/métodos , Pandemias/prevenção & controle , Pneumonia Viral/tratamento farmacológico , Pneumonia Viral/prevenção & controle , Bibliotecas de Moléculas Pequenas/administração & dosagem , Vacinas Virais/administração & dosagem , Vacina BCG/imunologia , Betacoronavirus/imunologia , COVID-19 , Vacinas contra COVID-19 , Infecções por Coronavirus/imunologia , Infecções por Coronavirus/mortalidade , Humanos , Imunidade Inata , Pneumonia Viral/imunologia , Pneumonia Viral/mortalidade , SARS-CoV-2 , Biologia de Sistemas/métodos , Vacinas Virais/imunologia , Fluxo de Trabalho , Tratamento Farmacológico da COVID-19
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA